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ABSTRACT

The authors propose a new climatic drought index: the standardized precipitation evapotranspiration index

(SPEI). The SPEI is based on precipitation and temperature data, and it has the advantage of combining

multiscalar character with the capacity to include the effects of temperature variability on drought as-

sessment. The procedure to calculate the index is detailed and involves a climatic water balance, the accu-

mulation of deficit/surplus at different time scales, and adjustment to a log-logistic probability distribution.

Mathematically, the SPEI is similar to the standardized precipitation index (SPI), but it includes the role of

temperature. Because the SPEI is based on a water balance, it can be compared to the self-calibrated Palmer

drought severity index (sc-PDSI). Time series of the three indices were compared for a set of observatories

with different climate characteristics, located in different parts of the world. Under global warming condi-

tions, only the sc-PDSI and SPEI identified an increase in drought severity associated with higher water

demand as a result of evapotranspiration. Relative to the sc-PDSI, the SPEI has the advantage of being

multiscalar, which is crucial for drought analysis and monitoring.

1. Introduction

Drought is one of the main natural causes of agricul-

tural, economic, and environmental damage (Burton et al.

1978; Wilhite and Glantz 1985; Wilhite 1993). Droughts

are apparent after a long period without precipitation, but

it is difficult to determine their onset, extent, and end.

Thus, it is very difficult to objectively quantify their

characteristics in terms of intensity, magnitude, dura-

tion, and spatial extent. For this reason, much effort has

been devoted to developing techniques for drought anal-

ysis and monitoring. Among these, objective indices are

the most widely used, but subjectivity in the definition

of drought has made it very difficult to establish a

unique and universal drought index (Heim 2002). A

number of indices were developed during the twentieth

century for drought quantification, monitoring, and anal-

ysis (Du Pisani et al. 1998; Heim 2002; Keyantash and

Dracup 2002).

In recent years, there have been many attempts to de-

velop new drought indices, or to improve existing ones

(González and Valdés 2006; Keyantash and Dracup 2004;

Wells et al. 2004; Tsakiris et al. 2007). Most studies re-

lated to drought analysis and monitoring systems have

been conducted using either 1) the Palmer drought se-

verity index (PDSI; Palmer 1965), based on a soil water

balance equation, or 2) the standardized precipitation

index (SPI; McKee et al. 1993), based on a precipitation

probabilistic approach.

The PDSI was a landmark in the development of

drought indices. It enables measurement of both wetness

(positive value) and dryness (negative values), based on

the supply and demand concept of the water balance

equation, and thus it incorporates prior precipitation,
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moisture supply, runoff, and evaporation demand at the

surface level. The calculation procedure has been ex-

plained in a number of studies (e.g., Karl 1983, 1986;

Alley 1984). Nevertheless, the PDSI has several de-

ficiencies (Alley 1984; Karl 1986; Soulé 1992; Akinremi

et al. 1996; Weber and Nkemdirim 1998), including the

strong influence of calibration period, its limited util-

ity in areas other than that used for calibration, prob-

lems in spatial comparability, and subjectivity in relating

drought conditions to the values of the index. Many of

these problems were solved by development of the self-

calibrated PDSI (sc-PDSI; Wells et al. 2004), which is

spatially comparable and reports extreme wet and dry

events at frequencies expected for rare conditions. Nev-

ertheless, the main shortcoming of the PDSI has not been

resolved. This relates to its fixed temporal scale (between

9 and 12 months) and an autoregressive characteristic,

whereby index values are affected by the conditions up to

four years in the past (Guttman 1998).

It is commonly accepted that drought is a multiscalar

phenomenon. McKee et al. (1993) clearly illustrated this

essential characteristic of droughts through the consid-

eration of usable water resources, including soil moisture,

groundwater, snowpack, river discharges, and reservoir

storages. The period from the arrival of water inputs to

availability of a given usable resource differs consider-

ably. Thus, the time scale over which water deficits accu-

mulate becomes extremely important, and it functionally

separates hydrological, environmental, agricultural, and

other droughts. For example, the response of hydrological

systems to precipitation can vary markedly as a function of

time (Changnon and Easterling 1989; Elfatih et al. 1999;

Pandey and Ramasastri 2001). This is determined by

the different frequencies of hydrologic/climatic variables

(Skøien et al. 2003). For this reason, drought indices

must be associated with a specific time scale to be useful

for monitoring and managing different usable water

resources. This explains the wide acceptance of the SPI,

which is comparable in time and space (Guttman 1998;

Hayes et al. 1999), and it can be calculated at different

time scales to monitor droughts with respect to different

usable water resources. A number of studies have dem-

onstrated variation in response of the SPI to soil moisture,

river discharge, reservoir storage, vegetation activity, crop

production, and piezometric fluctuations at different time

scales (e.g., Szalai et al. 2000; Sims et al. 2002; Ji and Peters

2003; Vicente-Serrano and López-Moreno 2005; Vicente-

Serrano et al. 2006; Patel et al. 2007; Vicente-Serrano

2007; Khan et al. 2008).

The main criticism of the SPI is that its calculation is

based only on precipitation data. The index does not

consider other variables that can influence droughts, such

as temperature, evapotranspiration, wind speed, and soil

water holding capacity. Nevertheless, several studies have

shown that precipitation is the main variable determining

the onset, duration, intensity, and end of droughts (Chang

and Cleopa 1991; Heim 2002). Thus, the SPI is highly

correlated with the PDSI at time scales of 6–12 months

(Lloyd-Hughes and Saunders 2002; Redmond 2002).

Low data requirements and simplicity explain the wide

use of precipitation-based indices, such as the SPI, for

drought monitoring and analysis.

Precipitation-based drought indices, including the SPI,

rely on two assumptions: 1) the variability of precipitation

is much higher than that of other variables, such as tem-

perature and potential evapotranspiration (PET), and

2) the other variables are stationary (i.e., they have no

temporal trend). In this scenario, the importance of these

other variables is negligible, and droughts are controlled

by the temporal variability in precipitation. However,

some authors have warned against systematically ne-

glecting the importance of the effect of temperature on

drought conditions. For example, Hu and Willson (2000)

assessed the role of precipitation and temperature in the

PDSI and found that the index responded equally to

changes of similar magnitude in both variables. Only

where the temperature fluctuation was smaller than that

of precipitation was variability in the PDSI controlled by

precipitation.

Empirical studies have shown that temperature rise

markedly affects the severity of droughts. For example,

Abramopoulos et al. (1988) used a general circulation

model experiment to show that evaporation and tran-

spiration can consume up to 80% of rainfall. In addition,

they found that the efficiency of drying resulting from

temperature anomalies is as high as that due to rainfall

shortage. The role of temperature was evident in the

devastating central European drought during the sum-

mer of 2003. Although previous precipitation was lower

than normal, the extremely high temperatures over most

of Europe during June and July (more than 48C above

the average) caused the greatest damage to cultivated

and natural systems, and dramatically increased evapo-

transpiration rates and water stress (Rebetez et al. 2006).

Some studies have also found that the PDSI explains

the variability in crop production and the activity of

natural vegetation better than the SPI (Mavromatis 2007;

Kempes et al. 2008).

There has been a general temperature increase (0.58–

28C) during the last 150 years (Jones and Moberg 2003),

and climate change models predict a marked increase

during the twenty-first century (Solomon et al. 2007). It

is expected that this will have dramatic consequences for

drought conditions, with an increase in water demand

as a result of evapotranspiration (Sheffield and Wood

2008). Dubrovsky et al. (2008) recently showed that the
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drought effects of warming predicted by global climate

models can be clearly seen in the PDSI, whereas the SPI

(which is based only on precipitation data) does not re-

flect expected changes in drought conditions.

Therefore, the use of drought indices that include

temperature data in their formulation (such as the PDSI)

is preferable, especially for applications involving future

climate scenarios. However, the PDSI lacks the multi-

scalar character essential for both assessing drought in

relation to different hydrological systems and differ-

entiating among different drought types. We therefore

formulated a new drought index—the standardized pre-

cipitation evapotranspiration index (SPEI)—based on

precipitation and PET. The SPEI combines the sensitivity

of PDSI to changes in evaporation demand (caused by

temperature fluctuations and trends) with the simplicity

of calculation and the multitemporal nature of the SPI.

The new index is particularly suited to detecting, moni-

toring, and exploring the consequences of global warming

on drought conditions.

2. Problem overview

As an illustrative example, Fig. 1 shows the evolution

of the sc-PDSI and the SPI at different time scales from

1910 to 2007 at the Indore observatory (India). The sc-

PDSI was devised by Wells et al. (2004) to address the

shortcomings of the PDSI. We used the software de-

veloped by Wells (2003) for calculations (available online

at http://greenleaf.unl.edu/downloads). The time series of

monthly precipitation and monthly-mean temperature

were obtained from the Global Historical Climatology

Network (GHCN-monthly) database (available online

at http://www.ncdc.noaa.gov/oa/climate/ghcn-monthly/).

The water field capacity at Indore, which was needed to

derive the sc-PDSI, was obtained from a global digital

format dataset of water holding capacity, described by

Webb et al. (1993). The SPI was calculated according to

a Pearson III distribution and the L-moment method to

obtain the distribution parameters, following Vicente-

Serrano (2006). Figure 1 shows that the sc-PDSI has a

unique time scale, in which the longest and most severe

droughts were recorded in the decades 1910, 1920, 1950,

1960, and 2000. These episodes are also clearly identified

by the SPI at long time scales (12–24 months). This

provides evidence about the suitability of identifying

and monitoring droughts using an index that only con-

siders precipitation data. Moreover, this example shows

the advantage of the SPI over the sc-PDSI, since the

different time scales over which the SPI can be calcu-

lated allow for the identification of different drought

types. At the shortest time scales, the drought series

show a high frequency of drought and moist periods of

short duration. In contrast, at the longest time scales, the

drought periods are of longer duration and lower fre-

quency. Thus, short time scales are mainly related to soil

water content and river discharge in headwater areas,

medium time scales are related to reservoir storages and

discharge in the medium course of the rivers, and long

time scales are related to variations in groundwater

storage. Therefore, different time scales are useful for

monitoring drought conditions in different hydrological

subsystems.

Climatic change processes result in two main pre-

dictions with implications for the duration and magni-

tude of droughts (Solomon et al. 2007): 1) precipitation

will decrease in some regions, and 2) an increase in global

temperature, which will be more intense in the Northern

Hemisphere, will cause an increase in the evapotranspi-

ration rate.

A reduction in precipitation due to climate change will

affect the severity of droughts. Current climate change

A2 scenarios for the end of the twenty-first century

(Solomon et al. 2007) show a maximum reduction of 15%

in total precipitation in some regions. The influence of

a reduction in precipitation on future drought conditions

is identified by both the sc-PDSI and the SPI. Figure 2

shows the evolution of the sc-PDSI and the 18-month SPI

at Albuquerque between 1910 and 2007. Both indices

were calculated using a hypothetical progressive pre-

cipitation decrease of 15% during this period. Both

the modeled SPI and sc-PDSI series showed an in-

crease in the duration and magnitude of droughts at the

end of the century relative to the series computed with

real data. As a consequence of the precipitation de-

crease, droughts recorded in the decades of 1970–2000

increased in maximum intensity, total magnitude, and

duration. In contrast, the humid periods showed the op-

posite behavior. Therefore, both indices have the capac-

ity to record changes in droughts related to changes in

precipitation.

However, climate change scenarios also show a tem-

perature increase during the twentieth century. In some

cases, such as the A2 greenhouse gas emissions scenario,

the models predict a temperature increase that might

exceed 48C with respect to the 1960–90 average (Solomon

et al. 2007). This increase will have consequences for

drought conditions, which are clearly identified by the

PDSI (Mavromatis 2007; Dubrovsky et al. 2008). Figure 3

shows the evolution of the sc-PDSI in Albuquerque,

computed with real data between 1910 and 2007, but it

also considers a progressive increase of 28–48C in the

mean temperature series. The differences between the sc-

PDSI using real data and the two modeled series are also

shown. This simple experiment clearly shows an increase

in the duration and magnitude of droughts at the end of
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the century, which is directly related to the temperature

increase. A similar pattern could not be identified using

the SPI, demonstrating the shortcomings of this wide-

spread index in addressing the consequences of climate

change.

3. Methodology

We describe here a simple multiscalar drought index

(the SPEI) that combines precipitation and temperature

data. The SPEI is very easy to calculate, and it is based on

the original SPI calculation procedure. The SPI is cal-

culated using monthly (or weekly) precipitation as the

input data. The SPEI uses the monthly (or weekly) dif-

ference between precipitation and PET. This represents

a simple climatic water balance (Thornthwaite 1948) that

is calculated at different time scales to obtain the SPEI.

The first step, the calculation of the PET, is difficult

because of the involvement of numerous parameters,

including surface temperature, air humidity, soil incoming

radiation, water vapor pressure, and ground–atmosphere

latent and sensible heat fluxes (Allen et al. 1998).

FIG. 1. The sc-PDSI and 3-, 6-, 12-, 18-, and 24-month SPIs at the Indore observatory (1910–2007).
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Different methods have been proposed to indirectly es-

timate the PET from meteorological parameters mea-

sured at weather stations. According to data availability,

such methods include physically based methods (e.g.,

the Penman–Monteith method; PM) and models based

on empirical relationships, where PET is calculated with

fewer data requirements. The PM method has been

adopted by the International Commission on Irrigation

and Drainage (ICID), the Food and Agriculture Orga-

nization of the United Nations (FAO), and the Ameri-

can Society of Civil Engineers (ASCE) as the standard

procedure for computing PET. The PM method requires

large amounts of data because its calculation involves

values for solar radiation, temperature, wind speed, and

relative humidity. In the majority of regions of the world,

these meteorological data are not available. Accordingly,

alternative empirical equations have been proposed for

PET calculation where data are scarce (Allen et al. 1998).

Although some methods in general provide better results

than others for PET quantification (Droogers and Allen

FIG. 2. PDSI and 18-month SPI at the Albuquerque observatory (1910–2007). Both indices were calculated from

precipitation series containing a progressive reduction of 15% between 1910 and 2007. The difference between the

indices is also shown.
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2002), the purpose of including PET in the drought index

calculation is to obtain a relative temporal estimation,

and therefore the method used to calculate the PET is

not critical. Mavromatis (2007) recently showed that

the use of simple or complex methods to calculate the

PET provides similar results when a drought index,

such as the PDSI, is calculated. Therefore, we followed

the simplest approach to calculate PET (Thornthwaite

1948), which has the advantage of only requiring data

on monthly-mean temperature. Following this method,

the monthly PET (mm) is obtained by

PET 5 16K
10T

I

� �m

,

where T is the monthly-mean temperature (8C); I is a

heat index, which is calculated as the sum of 12 monthly

index values i, the latter being derived from mean-

monthly temperature using the formula

i 5
T

5

� �1.514

;

m is a coefficient depending on I: m 5 6.75 3 1027 I3 2

7.71 3 1025 I2 1 1.79 3 1022 I 1 0.492; and K is a cor-

rection coefficient computed as a function of the latitude

and month,

K 5
N

12

� �
NDM

30

� �
.

Here NDM is the number of days of the month and N is

the maximum number of sun hours, which is calculated

using

FIG. 3. Evolution of the sc-PDSI at the Albuquerque observatory between 1910 and 2007, and under progressive

temperature increase scenarios of 28 and 48C during the same period. The difference between the indices is also shown.
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N 5
24

p

� �
-

s
,

where -s is the hourly angle of sun rising, which is cal-

culated using

-
s
5 arccos(�tanu tand),

where u is the latitude in radians and d is the solar

declination in radians, calculated using

d 5 0.4093 sen
2pJ

365
� 1.405

� �
,

where J is the average Julian day of the month.

With a value for PET, the difference between the pre-

cipitation P and PET for the month i is calculated using

D
i
5 P

i
� PET

i
,

which provides a simple measure of the water surplus or

deficit for the analyzed month. Tsakiris et al. (2007)

proposed the ratio of P to PET as a suitable parameter

for obtaining a drought index that accounts for global

warming processes. This approach has some shortcom-

ings: the parameter is not defined when PET 5 0 (which

is common in many regions of the world during winter),

and the P/PET quotient reduces dramatically the range

of variability and deemphasizes the role of temperature

in droughts.

The calculated Di values are aggregated at different

time scales, following the same procedure as that for the

SPI. The difference Dk
i, j in a given month j and year i

depends on the chosen time scale k. For example, the

accumulated difference for one month in a particular

year i with a 12-month time scale is calculated using

Xk
i, j 5 �

12

l513�k1 j
D

i�1,l
1 �

j

l51
D

i,l
, if j , k and

Xk
i, j 5 �

j

l5 j�k11
D

i,l
, if j $ k,

where Di,l is the P 2 PET difference in the first month

of year i, in millimeters.

For calculation of the SPI at different time scales, a

probability distribution of the gamma family is used (the

two-parameter gamma or three-parameter Pearson III

distributions), because the frequencies of precipitation

accumulated at different time scales are well modeled

using these statistical distributions. Although the SPI can

be calculated using a two-parameter distribution, such as

the gamma distribution, a three-parameter distribution is

needed to calculate the SPEI. In two-parameter distri-

butions, the variable x has a lower boundary of zero (0 .

x , ‘), whereas in three-parameter distributions, x can

take values in the range (g . x , ‘), where g is the

parameter of origin of the distribution; consequently, x

can have negative values, which are common in D series.

We tested the most suitable distribution to model the

Di values calculated at different time scales. For this

purpose, L-moment ratio diagrams were used because

they allow for comparison of the empirical frequency

distribution of D series computed at different time scales

with a number of theoretical distributions (Hosking 1990).

The L moments are analogous to conventional central

moments, but they are able to characterize a wider range

of distribution functions and are more robust in relation to

outliers in the data.

To create the L-moment ratio diagrams, L-moment

ratios (L skewness t3 and L kurtosis t4) must be calcu-

lated. Here t3 and t4 are calculated as follows:

t
3

5
l

3

l
2

and

t
4

5
l

4

l
2

,

where l2, l3, and l4 are the L moments of the D series,

obtained from probability-weighted moments (PWMs)

using the formulas

l
1

5 w
0
,

l
2

5 w
0
� 2w

1
,

l
3

5 w
0
� 6w

1
1 6w

2
, and,

l
4

5 w
0
� 12w

1
1 30w

2
� 20w

3
.

The PWMs of order s are calculated as

w
s
5

1

N
�
N

i51
(1� F

i
)sD

i
,

where Fi is a frequency estimator calculated following

the approach of Hosking (1990):

F
i
5

i� 0.35

N
,

where i is the range of observations arranged in in-

creasing order and N is the number of data points. The

values for t3 and t4 were calculated from the D series

of 11 observatories between 1910 and 2007 in different
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regions of the world, under varying conditions that in-

cluded tropical (Tampa, Florida; São Paulo, Brazil), mon-

soon (Indore), Mediterranean (Valencia, Spain), semiarid

(Albuquerque), continental (Wien, Austria), cold (Punta

Arenas, Chile), and oceanic (Abashiri, Japan) climates

(Fig. 4). The dataset was obtained from the GHCN-

monthly database.

Figure 5 shows the L-moment diagrams for the D se-

ries, accumulated for time scales of 3 and 18 months for

the 11 selected observatories. For each observatory

12 points are shown, each corresponding to a 1-month

series. The empirical L-moment ratios for the analyzed

D series at different time scales could be adjusted by

different candidate distributions (e.g., Pearson III, log-

normal, general extreme value, log-logistic) because the

empirical statistics oscillate around these curves. Ac-

cording to the Kolmogorov–Smirnoff test, none of these

four distributions can be rejected in the different monthly

series and time scales for the 11 observatories analyzed.

Figure 6 shows the curves of the four distributions and the

empirical frequencies for the D series calculated at the

time scales of 1, 3, 6, 12, 18, and 24 months for the Al-

buquerque observatory. It is evident that the four distri-

butions adapt well to the empirical frequencies of the D

series, independently of the time scale analyzed. Figure 7

shows the modeled accumulated probabilities F(x) for the

Albuquerque observatory for time scales of 1, 6, 12, and

24 months, using the four distributions and the empirical

cumulative probabilities. This figure shows the high de-

gree of similarity among the four curves. Independently

of the probability distribution selected, the modeled F(x)

values adjust very well to the empirical probabilities. This

was also observed for the other analyzed observato-

ries. Therefore, selecting the most suitable distribution to

FIG. 4. Location of the 11 observatories used in the study.

FIG. 5. L-moment ratio diagrams for D series calculated at the time scales of 3 and 18 months. The theoretical L-moment ratios for

different distributions are shown, as are the empirical values obtained from the monthly series at each observatory.
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model the D series is difficult, given the similarity among

the four distributions. Therefore, we based our selection

on the behavior at the most extreme values. Given the

marked decrease in the curves that adjust the lower values

for the Pearson III, lognormal and general extreme value

distributions, we found extremely low cumulative proba-

bilities for very low values corresponding to fewer than 1

occurrence in 1 000 000 years, mainly at the shortest time

scales. Also, in some cases we found values of D that were

below the origin parameter of the distribution, which

implies that f(x) and F(x) cannot be defined for these

values. In contrast, the log-logistic distribution showed a

more gradual decrease in the curve for low values, and

more coherent probabilities were obtained for very low

values of D, corresponding to 1 occurrence in 200–500

years. Additionally, no values were found below the

origin parameter of the distribution. These results sug-

gested the selection of the log-logistic distribution for

standardizing the D series to obtain the SPEI.

The probability density function of a three-parameter

log-logistic distributed variable is expressed as

f (x) 5
b

a

x� g

a

� �b�1

1 1
x� g

a

� �b
� ��2

,

where a, b, and g are scale, shape, and origin parame-

ters, respectively, for D values in the range (g . D , ‘).

Parameters of the log-logistic distribution can be

obtained following different procedures. Among them,

the L-moment procedure is the most robust and easy

approach (Ahmad et al. 1988). When L moments are

calculated, the parameters of the Pearson III distribu-

tion can be obtained following Singh et al. (1993):

b 5
2w

1
� w

0

6w
1
� w

0
� 6w

2

,

a 5
(w

0
� 2w

1
)b

G(1 1 1/b)G(1� 1/b)
, and

g 5 w
0
� aG

1 1 1

b

� �
G

1� 1

b

� �
,

where G(b) is the gamma function of b.

The log-logistic distribution adapted very well to the

D series for all time scales. Figure 8 shows the proba-

bility density functions for the log-logistic distribution

obtained from the D series at different time scales for

the Albuquerque observatory. The log-logistic distribu-

tion can account for negative values, and it is capable of

adopting different shapes to model the frequencies of the

D series at different time scales.

The probability distribution function of the D series,

according to the log-logistic distribution, is given by

FIG. 6. Empirical and modeled f(x) values using the Pearson III, log-logistic, lognormal and general extreme values distributions of the

D series at the time scales of 1, 3, 6, 12, 18, and 24 months at the Albuquerque observatory.
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F(x) 5 1 1
a

x� g

� �b
" #�1

.

The F(x) values for the D series at different time scales

adapt very well to the empirical F(x) values at the dif-

ferent observatories, independently of the climate char-

acteristics and the time scale of the analysis. Figure 9

shows an example of the results for the 3- and 12-month

series of Albuquerque; São Paulo; and Helsinki, Finland,

but similar observations were made for the other obser-

vatories and time scales. This demonstrates the suitability

of the log-logistic distribution to model F(x) values from

the D series in any region of the world.

With F(x) the SPEI can easily be obtained as the

standardized values of F(x). For example, following

the classical approximation of Abramowitz and Stegun

(1965),

SPEI 5 W �
C

0
1 C

1
W 1 C

2
W2

1 1 d
1
W 1 d

2
W2 1 d

3
W3

,

where

W 5
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�2 ln(P)

p
for P # 0.5

and P is the probability of exceeding a determined D

value, P 5 1 2 F(x). If P . 0.5, then P is replaced by

1 2 P and the sign of the resultant SPEI is reversed. The

constants are C0 5 2.515517, C1 5 0.802853, C2 5

0.010328, d1 5 1.432788, d2 5 0.189269, and d3 5 0.001308.

FIG. 7. Empirical vs modeled F(x) values from Pearson III, log-logistic, lognormal and

general extreme value distributions for D series at time scales of 1, 6, 12, and 24 months at the

Albuquerque observatory.

FIG. 8. Probability density functions of the log-logistic distribu-

tion for D series calculated at different time scales at the Albu-

querque observatory.
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The average value of SPEI is 0, and the standard deviation

is 1. The SPEI is a standardized variable, and it can

therefore be compared with other SPEI values over time

and space. An SPEI of 0 indicates a value corresponding

to 50% of the cumulative probability of D, according to

a log-logistic distribution.

4. Results

a. Current climatic conditions

Figure 10 shows the sc-PDSI, and the 3-, 12- and 24-

monthly SPIs and SPEIs for Helsinki between 1910 and

2007. According to the sc-PDSI, the main drought epi-

sodes occurred in the decades of 1930, 1940, 1970, and

2000. These droughts are also clearly identified by the

SPI and the SPEI. Few differences were apparent be-

tween the SPI and the SPEI series, independently of the

time scale of analysis. This result shows that under cli-

mate conditions in which low interannual variability of

temperature dominates, both drought indices respond

mainly to the variability in precipitation. Figure 11 shows

the results for the São Paulo observatory, in which the

sc-PDSI identified drought episodes in the decades of

1910, 1920, 1960, and 2000. In contrast, these episodes

were not clearly evident with the SPI, especially at longer

time scales. Thus, the SPI identified droughts in the

FIG. 9. Theoretical values according the log-logistic distribution (black line) vs empirical

(dots) F(x) values for D series at time scales of 3 and 12 months for the Albuquerque, São

Paulo, and Helsinki observatories.
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decades of 1910, 1950, and 1960 but not the long and

severe drought of 2000. In contrast, the SPEI identi-

fied all four drought periods. The mean temperature in-

creased markedly at São Paulo between 1910 and 2007

(0.298C decade21), and this increase would have pro-

duced a higher water demand by PET at the end of the

century. This would have affected drought severity, which

was clearly recorded by sc-PDSI in the decade of 2000.

The role of a temperature increase on drought conditions

was not recognized using the precipitation-based SPI

drought index, but it was identified for the 2000 drought

using the SPEI index.

Figure 12 shows the correlation between the 191022007

series for sc-PDSI and the 1- to 24-monthly SPI and SPEI

for each of the observatories shown in Fig. 4. As indicated

in previous reports, there is strong agreement between

the sc-PDSI and the SPI, with maximum values that

oscillate between 0.6 and 0.85 at time scales between

5 and 24 months. A similar result was found for the

SPEI; although, in general, the correlations increased

with respect to the SPI, mainly for observatories af-

fected by warming processes during the twentieth cen-

tury, including Valencia (0.328C decade21), Albuquerque

(0.28C decade21), and São Paulo. The correlation be-

tween the SPI and the SPEI was high for the different

series, independently of the time scale analyzed; the

exceptions were Valencia and Albuquerque, where cor-

relations decreased at the longest time scales. These

results are in agreement with the hypothesis that the

main explanatory variable for droughts is precipitation.

FIG. 10. The sc-PDSI; 3-, 12- and 24-month SPI; and SPEI at the Helsinki observatory (1910–2007).

FIG. 11. Same as Fig. 10 but at São Paulo observatory (1910–2007).
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Therefore, under the current climate conditions inclu-

sion of a variable to quantify PET in the SPEI and the

sc-PDSI does not provide much additional information.

This is particularly obvious at those observatories where

the evolution of temperature was stationary during the

analysis period. However, some of the results presented

in Fig. 12 indicate that this hypothesis may not hold over

long time scales under global warming conditions, since

differences were found between the SPI and the SPEI

for the three observatories where temperature increased

over the analysis period.

b. Global warming effects

In the two scenarios (i.e., temperature increases of 28

and 48C), the D series obtained at the 11 observatories

showed a similar statistical behavior to that observed

under real climate conditions. Figure 13 shows the

L-moment ratio diagrams for the D series at the same

11 observatories, but with the addition of a progressive

temperature increase of 28 and 48C between 1910 and

2007, in relation to the original series from which the PET

was calculated. The L-moment ratio diagrams show small

changes from those obtained for the original series. The

empirical L-moment ratios show that the log-logistic

distribution is also suitable to model the D series at the

various observatories, independent of the time scale in-

volved and the magnitude of the temperature increase.

Therefore, global warming does not affect the choice of

model for determining the SPEI. The modeled F(x)

values from the log-logistic distribution also showed a

good fitting of the empirical F(x) values under a tem-

perature increase of 28 and 48C at the various observa-

tories, independently of the region of the world analyzed

(Fig. 14).

Figure 15 shows the evolution of the sc-PDSI obtained

using the original and the modeled series for the Valencia

observatory. The 18-month SPI and SPEI obtained with

that series are also shown. Using the original data, the sc-

PDSI identified the most important droughts in the de-

cades of 1990 and 2000. With a progressive temperature

increase of 28 and 48C, the droughts increased in magni-

tude and duration at the end of the century. The SPI did

not identify those severe droughts associated with a

marked temperature increase, and it did not take into

account the role of increased temperature in reinforc-

ing drought conditions, as was shown by the sc-PDSI. In

FIG. 12. Correlation between the 1910–2007 series for the sc-PDSI, and 1–24-month SPI and SPEI at the

11 analyzed observatories.
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contrast, the main drought episodes were identified by

the SPEI, with similar evolution to that observed for the

sc-PDSI. Moreover, if temperature increased progres-

sively by 28 or 48C, the reinforcement of drought severity

associated with higher water demand by PET was readily

identified by the SPEI, with the time series showing a high

similarity to the sc-PDSI observed under warming sce-

narios. The same pattern was observed for the other an-

alyzed observatories. Figure 16 shows the evolution at

the Abashiri observatory, where no increase in temper-

ature occurred during the 191022007 period. The SPI

and SPEI series were similar, both identifying the main

drought episodes in the decades of 1920, 1950, 1980, 1990,

and 2000. There was also a high degree of similarity with

the sc-PDSI series during the same period. If the temper-

ature was increased by 28 and 48C during the same period,

then the sc-PDSI showed reinforcement of drought se-

verity at the end of the century. This was also observed

with the SPEI. Therefore, the sc-PDSI and SPEI series

were similar under the simulated warming conditions.

Thus, under the progressive temperature increase pre-

dicted by current climate change models, the relationship

between the sc-PDSI and the SPI was dramatically re-

duced. Figure 17 shows the correlations between the sc-

PDSI, the SPI, and the SPEI under the two considered

scenarios of a temperature increase. With a temperature

increase of 28C, the correlation coefficients between the

sc-PDSI and the SPI decreased noticeably in comparison

to the sc-PDSI calculated from the original series. The

correlation values for the original series were 0.6520.80

for the various observatories. Under a scenario of 28C

temperature increase, the correlation values decreased

to 0.52–0.75. However, the correlations between the sc-

PDSI and the SPEI for a temperature increase of 28C

were similar and higher than that calculated using the

original series. This implies that the SPEI also accounts

for the effect of warming processes on drought severity.

In contrast, the correlation values between the SPI and

the SPEI decreased noticeably under a scenario of a 28C

temperature increase. This occurred mainly at the lon-

gest time scales, where deficits due to PET accumulate,

and also in the observatories located in tropical (São

Paulo, Indore), Mediterranean (Valencia, Kimberley),

and semiarid (Albuquerque, Lahore) climates. In these

FIG. 13. L-moment ratio diagrams for the D series calculated at the time scales of 3 and 18 months. Progressive temperature increase of

(a) 28 and (b) 48C. The theoretical L-moment ratios for different distributions are shown, as are the empirical values obtained from the

monthly series at each observatory.
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regions of high mean temperature, an additional tem-

perature increase of 28C would markedly increase water

losses by PET. In cold areas (e.g., Abashiri and Hel-

sinki), the relationship between SPI and SPEI under

a scenario of a 28C temperature increase did not change

noticeably in relation to the original series, since PET

would remain relatively low.

With a temperature increase of 48C (Fig. 17b), the

correlation between the sc-PDSI and the SPI decreased

even more than for a 28C increase (0.4020.70), whereas

the correlation between the sc-PDSI and the SPEI

remained generally unchanged. At some observatories,

values were higher than the indices calculated from the

temperature series and for a temperature increase of 28C.

With a temperature increase of 48C, the correlations be-

tween SPI and SPEI decreased markedly for the majority

of observatories, particularly those located in warm cli-

mates. This suggests that if precipitation does not change

from the present conditions, temperature will play a ma-

jor role in determining future drought severity.

Intensification of drought severity due to global warm-

ing is correctly identified by the sc-PDSI, which is based on

a complex and reliable water balance widely accepted by

the scientific community. Our results confirm that the

increase in water demand as a result of PET in a global

change context will affect the future occurrence, in-

tensity, and magnitude of droughts. This suggests that

the SPI is suboptimal for the analysis and monitoring of

droughts under a warming scenario. However, given the

fixed time scale of the sc-PDSI, the SPEI offers advan-

tages because it provides similar patterns to that of the

sc-PDSI; however, it accounts for different time scales,

which is essential for the monitoring of different drought

types and assessment of the potential effect of droughts

on different usable water sources. Figure 18 compares

the SPEI and the sc-PDSI under a 48C temperature

increase scenario throughout the analysis period at the

Tampa observatory. Under this warming scenario, the

sc-PDSI shows quasi-continuous drought conditions

between 1970 and 2000, with some minor humid periods.

The persistent drought conditions during this period

are also clearly identified by the SPEI, independent of

the analysis time scale. Thus, the sc-PDSI provides the

same information as the SPEI at time scales of 7–10

months (correlation R values between 0.850 and 0.857),

but Fig. 18 clearly shows that the SPEI also provides

information about drought conditions at shorter and

longer time scales.

FIG. 14. Same as Fig. 9. Temperature increase of (a) 28 and (b) 48C.
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FIG. 15. Evolution of the sc-PDSI, and 18-month SPI and SPEI at the Valencia observatory. The original series

(1910–2007) and the sc-PDSI and SPEI were calculated for a temperature series with a progressive increase of 28 and

48C throughout the analyzed period.
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5. Discussion and conclusions

We have described a multiscalar drought index (the

standardized precipitation evapotranspiration index;

SPEI) that uses precipitation and temperature data and

is based on a normalization of the simple water balance

developed by Thornthwaite (1948). We assessed the

properties and advantages of this index in comparison

FIG. 16. Same as Fig. 15 but at the Abashiri observatory.
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FIG. 17. Same as Fig. 12. Temperature

increase of (a) 28 and (b) 48C.
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to the two most widely used drought indices: the self-

calibrated Palmer drought severity index (sc-PDSI) and

the standardized precipitation index (SPI). A multi-

scalar drought index is needed to take into account defi-

cits that affect different usable water sources and to

distinguish different types of drought. This has been

demonstrated in a number of studies that have shown how

different usable water sources respond to the different

FIG. 18. Evolution of the sc-PDSI, and 1-, 3-, 6-, 12-, 18-, and 24-month SPEI at the Tampa observatory under a 48C

temperature increase scenario relative to the origin.
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time scales of a drought index (e.g., Szalai et al. 2000;

Vicente-Serrano and López-Moreno 2005; Vicente-

Serrano 2007).

Under climatic conditions with low temporal variabil-

ity in temperature, the SPI is superior to the sc-PDSI,

since it identifies different drought types because of its

multiscalar character. Both indices have the capacity to

identify an intensification of drought severity related to

reduced precipitation in a climatic change context. Both

indices similarly record the effect of a reduction in pre-

cipitation on the drought index. Nevertheless, we have

demonstrated that global warming processes predicted by

GCMs (Solomon et al. 2007) have important implications

for evapotranspiration processes, increasing the influence

of this parameter on drought severity. We have shown

that this is readily identified by the PDSI, in line with

recent results of Dubrovsky et al. (2008), but this be-

havior is not well recorded by the SPI, given the unique

use of precipitation data in its calculation.

There is some scientific debate about which climate

parameters (e.g., precipitation, temperature, evapotrans-

piration, wind speed, relative humidity, solar radiation,

etc.) are the most important in determining drought se-

verity. There is general agreement on the importance

of precipitation in explaining drought variability and

the need to include this variable in the calculation of any

drought index. However, inclusion of a variable that ac-

counts for climatic water demand (such as evapotrans-

piration) is not always accepted, since its role in drought

conditions is not well understood or it is underestimated.

Various studies have shown that precipitation is the ma-

jor variable defining the duration, magnitude, and in-

tensity of droughts (Alley 1984; Chang and Cleopa 1991).

Oladipo (1985) compared different drought indices and

concluded that indices using only precipitation data pro-

vided the best option for identifying climatic droughts.

Nevertheless, Hu and Willson (2000) demonstrated that

evapotranspiration plays a major role in explaining drought

variability in drought indices based on soil water balances,

such as the PDSI, and that this is comparable to the role of

precipitation under some circumstances. It is not well un-

derstood how evapotranspiration processes can affect dif-

ferent usable water resources and how the different time

scales can determine water deficits. However, it is widely

recognized that evapotranspiration determines soil mois-

ture variability and, consequently, vegetation water con-

tent, which directly affects agricultural droughts commonly

recorded using short time-scale drought indices. Thus,

drought indices that only use evapotranspiration data to

monitor agricultural droughts have shown better results

than precipitation-based drought indices (Narasimhan

and Srinivasan 2005). Soil water losses due to evapo-

transpiration will also affect runoff, and these deficits

will affect river discharge and groundwater storage. How-

ever, PET can also cause large losses from water bodies,

such as reservoirs (Wafa and Labib 1973; Snoussi et al.

2002), which commonly have a low temporal inertia and

are well monitored by long time-scale drought indices

(Szalai et al. 2000; Vicente-Serrano and López-Moreno

2005). Therefore, although it is very complex to deter-

mine the influence of evapotranspiration on drought con-

ditions, it seems reasonable to include this variable in the

calculation of a drought index. The need for this increases

under increasing temperature conditions and also because

the role of different climate parameters in explaining water

resource availability is not constant in space. For example,

Syed et al. (2008) have shown that precipitation dom-

inates terrestrial water storage variation in the tropics,

but evapotranspiration is most effective in explaining the

variability at midlatitudes.

Where temporal trends in temperature are not ap-

parent, we found little difference between the values

obtained using a precipitation drought index, such as the

SPI, and other indices that include PET values, such as

the sc-PDSI and the SPEI. Given that drought is con-

sidered an abnormal water deficit with respect to average

conditions, the onset, duration, and severity of drought

could be determined from precipitation data. The in-

clusion of PET to calculate the SPEI only affects the

index when PET differs from average conditions, for

example, under global warming scenarios. The same

pattern has been observed in the sc-PDSI.

We detailed the procedure for calculating the SPEI.

This is based on the method used to calculate the SPI but

with modifications to include PET. The log-logistic dis-

tribution was chosen to model D (P 2 PET) values, and

the resulting cumulative probabilities were transformed

into a standardized variable. The distribution adapted

very well to climate regions with different characteris-

tics, independently of the time scale used to compute the

deficits. Therefore, the log-logistic distribution was used

to calculate the SPEI, whereas the Pearson III or gamma

distributions were used to calculate the SPI. Only when

the index was computed at short time scales for some

few very low precipitation PET values (mainly arid lo-

cations with a highly variable climatology) were any

problems experienced. These problems were minor and

already known for SPI calculations when the two-

parameter gamma distribution is used (Wu et al. 2007).

However, the use of three-parameter distributions to

calculate the SPEI reduced this problem noticeably.

We showed that under warming climate conditions, the

sc-PDSI decreases markedly, indicating more frequent

and severe droughts. Thus, according to the sc-PDSI,

temperature could play an important role in explaining

drought conditions under global warming. This is consistent
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with the results of a number of studies that show an in-

crease in future drought severity caused by a temperature

increase (Beniston et al. 2007; Sheffield and Wood 2008).

The increase in severity will be proportional to the mag-

nitude of the temperature change, and in some regions, the

observed temperature increase over the past century has

already had an effect on the sc-PDSI values. This phe-

nomenon can also be assessed using the SPEI, which was

very similar to the sc-PDSI under the two temperature

increase scenarios tested. This suggests that the SPEI

should be used in preference to the sc-PDSI, given the

former index’s simplicity, lower data requirements, and

multiscalar properties.

The SPI cannot identify the role of a temperature in-

crease in future drought conditions, and independently of

global warming scenarios, it cannot account for the in-

fluence of temperature variability and the role of heat

waves, such as that which affected central Europe in 2003.

The SPEI can account for the possible effects of tem-

perature variability and temperature extremes beyond

the context of global warming. Therefore, given the mi-

nor additional data requirements of the SPEI relative to

the SPI, use of the former is preferable for the identifi-

cation, analysis, and monitoring of droughts in any cli-

mate region of the world.

In summary, the SPEI fulfills the requirements of a

drought index, as indicated by Nkemdirim and Weber

(1999), since its multiscalar character enables it to be used

by different scientific disciplines to detect, monitor, and

analyze droughts. Like the sc-PDSI and the SPI, the SPEI

can measure drought severity according to its intensity

and duration, and it can identify the onset and end of

drought episodes. The SPEI allows for comparison of

drought severity through time and space, since it can be

calculated over a wide range of climates, as can the SPI.

Moreover, Keyantash and Dracup (2002) indicated that

drought indices must be statistically robust and easily

calculated and have a clear and comprehensible calcula-

tion procedure. All these requirements are met by the

SPEI. However, a crucial advantage of the SPEI over the

most widely used drought indices that consider the effect

of PET on drought severity is that its multiscalar char-

acteristics enable identification of different drought types

and effects in the context of global warming.

Software has been created to automatically calculate

the SPEI over a wide range of time scales. The software

is freely available in the Web repository of the Spanish

National Research Council (available online at http://

digital.csic.es/handle/10261/10002).
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——, and J. I. López-Moreno, 2005: Hydrological response to

different time scales of climatological drought: An eval-

uation of the standardized precipitation index in a moun-

tainous Mediterranean basin. Hydrol. Earth Syst. Sci., 9,

523–533.

——, J. M. Cuadrat-Prats, and A. Romo, 2006: Early prediction

of crop productions using drought indices at different

time-scales and remote sensing data: Application in the

Ebro Valley (north-east Spain). Int. J. Remote Sens., 27,

511–518.

Wafa, T. A., and A. H. Labib, 1973: Seepage losses from Lake

Nasser. Man-Made Lakes: Their Problems and Environmental

Effects, Geophys. Monogr., Vol. 17, Amer. Geophys. Union,

287–291.

1 APRIL 2010 V I C E N T E - S E R R A N O E T A L . 1717



Webb, R. S., C. E. Rosenzweig, and E. R. Levine, 1993: Specifying

land surface characteristics in general circulation models: Soil

profile data set and derived water-holding capacities. Global

Biogeochem. Cycles, 7, 97–108.

Weber, L., and L. C. Nkemdirim, 1998: The Palmer drought se-

verity index revisited. Geogr. Ann., 80A, 153–172.

Wells, N., 2003: PDSI Users Manual Version 2.0. National Agri-

cultural Decision Support System, University of Nebraska–

Lincoln, 17 pp. [Available online at http://greenleaf.unl.edu/

downloads/PDSI_Manual.pdf.]

——, S. Goddard, and M. J. Hayes, 2004: A self-calibrating Palmer

drought severity index. J. Climate, 17, 2335–2351.

Wilhite, D. A., 1993: Drought Assessment, Management, and

Planning: Theory and Case Studies. Natural Resource Man-

agement and Policy Series, Vol. 2, Kluwer, 293 pp.

——, and M. H. Glantz, 1985: Understanding the drought phe-

nomenon: The role of definitions. Water Int., 10, 111–120.

Wu, H., M. D. Svoboda, M. J. Hayes, D. A. Wilhite, and F. Wen, 2007:

Appropriate application of the Standardized Precipitation Index

in arid locations and dry seasons. Int. J. Climatol., 27, 65–79.

1718 J O U R N A L O F C L I M A T E VOLUME 23


