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Data 
The data used to construct the DCV indices was the Extended Reconstructed SST (ERSST; 

Reynolds et al. 2002).  For the Tropical Atlantic sea-surface temperature Gradient (TAG) index, 

the ERSST was averaged over two regions- the tropical North (5°–20°N, 30°–60°W) and South 

(0°–20°S, 30°W–10°E) Atlantic Ocean- with the TAG index defined as the difference between 

the north and the south. The Pacific Decadal Oscillation (PDO) index was constructed from 

ERSST as defined by Mantua et al. (1997) as the normalized PC time series of the first EOF 

(Lorenz 1956) of the Pacific SST anomalies within the 20°N to 65°N, 125°E to 100°W domain. 

In order to remove the seasonal cycle, the respective monthly climatology from 1961 to 2010 

was removed from both indices. 

 

The Self-Calibrated Palmer Drought (SC-PDSI; Palmer 1965, Wells et al. 2004), the Standardized 

Precipitation Index (SPI; McKee et al. 1993), and the Standard Precipitation-Evapotranspiration 

Index (SPEI; Vicente-Serrano et al., 2010) are the three main drought indices available.  The SC-

PDSI is the most commonly used index using the local water balance. The SPI is based on the 

conversion of precipitation data to probabilities based on long-term precipitation records 

computed on different time scales. The SPEI combines the sensitivity to evaporation demand 

found with the SC-PDSI, and the simplicity of the SPI calculation at multiple time scales 

(Vicente-Serrano et al. 2012), and is therefore the data used for the dryness/wetness indicator in 

this study. The SPEI was constructed first by finding difference between the monthly 

precipitation and the potential evapotranspiration (PET) using the Thornthwaite equation 

(Thornthwaite 1948), then the resulting difference was aggregated and standardized using a 3-

parameter distribution (Pearson III) at timescales from 1 to 24 months. Global correlations were 

calculated with each SPEI timescale and the SC-PDSI to determine the timescale used.  The 9-

month SPEI timescale was selected based on larger global correlations with the SC-PDSI.  Any 

location that was missing more than 20% of the data for the given time period used was removed 

from the analysis. 

 

Methods 
DCV phenomena historically tend to stay in phase on average from 8 to 10 years, therefore, 

persistence is a strong indicator of phase transitions from season to season and year to year.  

However, when the DCV change phase the dryness/wetness across the world is effected.  In 

order to predict the phase DCV phenomena in the future, we looked to the past.  First, transition 

probabilities of phase (+ above zero, and – below zero) were calculated for each index.  The 

transition probabilities between phases with lead times of one to four seasons, and one to five 

years, were created using DCV data from 1951 through 2017.  The transition probabilities were 

created between each timescale phases from 1951 to the season (year) one year prior to make the 

prediction. For example to predict September to November 2008 with a two-season lead time, 

transition probabilities from March to May 1951 to September to November 2007 where used, 

along with the actual March to May 2008 DCV phases.  Table 1 shows the accuracy of the 

predicted the sign both PDO and TAG using one-season to five-year lead time for roughly the 

last three decades (1992 to 2018) and the last decade (2008 to 2018).  Both PDO and TAG are 



accuracy predicted with significance (more than by chance- 50%) at nearly all lead times. The 

prediction of the DCV signs over the last decade were just as accurate, or more accurate as the 

last three decades, therefore only the last decade- 2008 to 2018- will be used in the following 

analysis. 

 

Next, the two DCVs’ phases were combined resulting in four possible phase combinations: 

PDO+ TAG+, PDO+ TAG-, PDO- TAG+, PDO- TAG-.  The two DCV phase transition 

probabilities with one-season to five-year lead times were calculated and used to produce the 

seasonal (yearly) dryness/wetness outlooks. The largest transition probability was used to 

determine the predicted DCV phases.  If more than one transition probability had the largest 

value, the transition that was most similar to the actual DCV phases of the predictor year was 

selected.  For one-season to two-year lead times this was always the same phase transition 

probability, however, for three-year to five-year lead times the same phase transition probability 

was not always the largest. 

 

In order to produce the dryness/wetness outlooks using the transition probabilities, composites of 

the SPEI were created using the historical DCV phases from the same time period used to create 

the transition probabilities (from 1951 to the year prior to the year of the prediction) for each of 

the four combined DCV phases.  Years corresponding to each phase combination were averaged 

to create a DCV phase composite of SPEI values.  Only the phase of the SPEI was determined 

resulting in values of either negative (dryness) or positive (wetness) regardless of the magnitude. 

 

Finally, the DCV predicted phases and the composites were used together to create the 

dryness/wetness outlooks.  The composite of SPEI associated with the same DCV phases of the 

predicted DCV phases with the largest transition probability was used as the outlook.  This was 

done with lead times of one season to five years. 

 

In order to find the accuracy of the dryness/wetness outlooks, outlooks from 2008 to 2018 were 

found and compared with the sign of the actual SPEI values for the outlook year.  An outlook 

was defined as accurate in locations where the sign of the SPEI matched the sign of the outlook.  

The accurate locations from the eleven verification years where then counted and made into 

probability (percent) of accuracy values.  (i.e. if a location was accurate 8 out of the 11 years the 

probability would be [8/11]*100=73%).  Figure 1 shows the probability of accuracy for the one-

season lead time.  The outlook accuracy would be 50% each for dryness and wetness if they were 

equally probable, therefore, only regions which had a better than 50% probability of correct 

outlook are plotted.  As figure 1 shows, one-season lead time results are very robust across the 

world for all four seasons.  Southern U.S. has accuracy probabilities between 70-90% for three of 

the four seasons with 50-60% in the remaining season.  September-October-November has 80-

100% accuracy in western Africa, a region very susceptible to drought; southern Africa has large 

accuracy probabilities from March to August during the dry season. Large areas of accuracy are 

found in northern South America from March to August, and more localized areas of accuracy 

through November.  North eastern Australia consistently has 60-90% accuracy in all four seasons 

with the rest of northern Australia having accuracy in March to May.  The one-year lead time 

probability of accuracy figure (not shown) has the same regions, southeastern U.S., western and 

southern Africa, northern South America, and northeastern Australia with 60-90% or more.  As 

the lead time increases, the regions of high accuracy fluctuate.  Figure 2 shows the probability of 



accuracy for the two- to five-year lead times.  In Figure 2a northern Brazil, southern Africa, and 

all of Australia are areas with large accuracy probabilities with a two-year lead time.  The three-

year lead time (figure 2b) has localized high probabilities in northern mid-latitude, with larger 

areas of higher probability in southern mid-latitudes.  Figure 2c  (four-year lead time) depicts 

tropical latitudes worldwide show regions of high (90-100%) accuracy, and regions in mid-

latitude locations such as Australia, northeast U.S., and Spain all have accuracy of 60-90%.  A 

five-year lead time (figure 2d) also has areas of large accuracy in the topical latitudes, although 

not as large as the four-year lead time.  From the worldwide analysis of the verification of the 

dryness/wetness outlooks, four regions (eastern U.S., northern South America, western Africa, 

and eastern Australia) were selected to provide a detailed analysis of the results including 

seasonal and annual outlooks from 2019 to 2023. 

 

 

 

Table 1. Prediction accuracy (%) of sign of DCV by lead time from 1992 to 2018 and from 2008 

to 2018. Bold values indicate significance. 

  
1992 - 2018 2008 - 2018 

Lead Time 
 

PDO TAG PDO TAG 

One-Season DJF to MAM 59 48 55 55 

 
MAM to JJA 74 52 82 55 

 
JJA to SON 52 48 64 45 

 
SON to DJF 89 74 91 64 

Two-Season DJF to JJA 63 44 73 55 

 
MAM to SON 52 52 64 55 

 
JJA to DJF 70 63 82 55 

 
SON to MAM 89 52 91 55 

Three-Season DJF to SON 48 74 55 91 

 
MAM to DJF 70 67 82 64 

 
JJA to MAM 70 48 64 64 

 
SON to JJA 70 37 73 55 

Four-Season DJF to DJF 59 56 73 55 

 
MAM to MAM 70 56 64 55 

 
JJA to JJA 81 48 82 45 

 
SON to SON 59 63 55 82 

One-Year 81 41 91 36 

Two-Year 63 56 73 55 

Three-Year 44 44 55 36 

Four-Year 74 56 64 55 

Five-Year 48 59 55 73 

 

 

 

 



 
 

Figure 1.  The probability of accuracy of dryness/wetness outlooks from 2008 to 2018 for 

outlooks made with one-season lead time.  Only areas of greater than 50% accuracy are plotted. 

 

 



 
 

Figure 2. The probability of accuracy of dryness/wetness outlooks from 2008 to 2018 for 

outlooks made with (a) two-year, (b) three-year, (c) four-year, and (d) five-year lead time.  Only 

areas of greater than 50% accuracy are plotted. 
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